Formulation of an ocean model for global climate simulations

نویسندگان

  • S. M. Griffies
  • A. Gnanadesikan
  • K. W. Dixon
  • J. P. Dunne
  • R. Gerdes
  • M. J. Harrison
  • A. Rosati
  • J. L. Russell
  • B. L. Samuels
  • M. J. Spelman
  • M. Winton
  • R. Zhang
چکیده

This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory’s (GFDL) climate model used for the 4th IPCC Assessment (AR4) of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1) tripolar grid to resolve the Arctic Ocean without polar filtering, (2) partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3) more accurate equation of state, (4) three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5) incorporation of regional climatological variability in shortwave penetration, (6) neutral physics parameterization for representation of the pathways of tracer transport, (7) staggered time stepping for tracer conservation and numerical efficiency, (8) anisotropic horizontal viscosities for representation of equatorial currents, (9) parameterization of exchange with marginal seas, (10) incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11) transport of water across the ocean free surface to eliminate unphysical “virtual tracer flux” methods, (12) parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers. Correspondence to: S. M. Griffies ([email protected])

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)

.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...

متن کامل

Formulation of an ocean climate model

Formulation of an ocean model for global climate simulations S. M. Griffies, A. Gnanadesikan, K. W. Dixon, J. P. Dunne, R. Gerdes, M. J. Harrison, A. Rosati, J. L. Russell, B. L. Samuels, M. J. Spelman, M. Winton, and R. Zhang NOAA Geophysical Fluid Dynamics Laboratory, Princeton, USA Alfred-Wegener-Institut für Polarund Meeresforschung, Bremerhaven, Germany Program in Atmospheric and Oceanic S...

متن کامل

Climate Simulations for 1951–2050 with a Coupled Atmosphere–Ocean Model

The authors simulate climate change for 1951–2050 using the GISS SI2000 atmospheric model coupled to HYCOM, a quasi-isopycnal ocean model (‘‘ocean E’’), and contrast the results with those obtained using the same atmosphere coupled to a passive Q-flux ocean model (‘‘ocean B’’) and the same atmosphere driven by observed SST (‘‘ocean A’’). All of the models give reasonable agreement with observed...

متن کامل

Deep ocean heat uptake as a major source of spread in transient climate change simulations

[1] Two main mechanisms can potentially explain the spread in the magnitude of global warming simulated by climate models: deep ocean heat uptake and climate feedbacks. Here, we show that deep oceanic heat uptake is a major source of spread in simulations of 21st century climate change. Models with deeper baseline polar mixed layers are associated with larger deep ocean warming and smaller glob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005